KCNC2 Antibody from MyBioSource.com

Supplier Page

Supplier Page from
MyBioSource.com for
KCNC2 Antibody

Get Pricing
MyBioSource.com's KCNC2 Antibody is a Rabbit Polyclonal antibody. This antibody has been shown to work in applications such as: ELISA, Immunocytochemistry, Immunofluorescence, Immunohistochemistry, and Western Blot. The KCNC2 Antibody was generated using KCNC2 as the antigen and it reacts with Human, Mouse, and Rat.

Description

Description: KCNC2 Mediates the voltage-dependent potassium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a potassium-selective channel through which potassium ions may pass in accordance with their electrochemical gradient. Channel properties are modulated by subunit assembly.
Function: Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes, primarily in the brain. Contributes to the regulation of the fast action potential repolarization and in sustained high-frequency firing in neurons of the central nervous system. Homotetramer channels mediate delayed-rectifier voltage-dependent potassium currents that activate rapidly at high-threshold voltages and inactivate slowly. Forms tetrameric channels through which potassium ions pass in accordance with their electrochemical gradient. The channel alternates between opened and closed conformations in response to the voltage difference across the membrane (PubMed:15709110). Can form functional homotetrameric and heterotetrameric channels that contain variable proportions of KCNC1, and possibly other family members as well; channel properties depend on the type of alpha subunits that are part of the channel. Channel properties may be modulated either by the association with ancillary subunits, such as KCNE1, KCNE2 or KCNE3 or indirectly by nitric oxide (NO) through a cGMP-and PKG-mediated signaling cascade, slowing channel activation and deactivation of delayed rectifier potassium channels (By similarity). Contributes to fire sustained trains of very brief action potentials at high frequency in retinal ganglion cells, thalamocortical and suprachiasmatic nucleus (SCN) neurons and in hippocampal and neocortical interneurons (PubMed:15709110). Sustained maximal action potential firing frequency in inhibitory hippocampal interneurons is negatively modulated by histamine H2 receptor activation in a cAMP-and protein kinase (PKA) phosphorylation-dependent manner. Plays a role in maintaining the fidelity of synaptic transmission in neocortical GABAergic interneurons by generating action potential (AP) repolarization at nerve terminals, thus reducing spike-evoked calcium influx and GABA neurotransmitter release. Required for long-range synchronization of gamma oscillations over distance in the neocortex. Contributes to the modulation of the circadian rhythm of spontaneous action potential firing in suprachiasmatic nucleus (SCN) neurons in a light-dependent manner (By similarity).
Subunit Structure: Homotetramer and heterotetramer with other channel-forming alpha subunits, such as KCNC1. Interacts with KCNC1. Homotetramer or heterotetramer channel activity is regulated by association with modulating ancillary subunits such as KCNE1, KCNE2 and KCNE3, creating a functionally diverse range of channel complexes. Interacts with KCNE1, KCNE2 and KCNE3.
Post-translational Modifications: Phosphorylated by PKA in cortical synaptosomes. cAMP-dependent phosphorylation inhibits channel activity (By similarity). Histamine H2 receptor-and PKA-induced phosphorylation extends action potential spike duration, reduces action potential spike amplitude, sustains maximum firing frequency in hippocampal interneurons; also reduces the incidence of high-frequency oscillations in hippocampal CA3 pyramidal cell layers.
Similarity: The transmembrane segment S4 functions as voltage-sensor and is characterized by a series of positively charged amino acids at every third position. Channel opening and closing is effected by a conformation change that affects the position and orientation of the voltage-sensor paddle formed by S3 and S4 within the membrane. A transmembrane electric field that is positive inside would push the positively charged S4 segment outwards, thereby opening the pore, while a field that is negative inside would pull the S4 segment inwards and close the pore. Changes in the position and orientation of S4 are then transmitted to the activation gate formed by the inner helix bundle via the S4-S5 linker region. Belongs to the potassium channel family. C (Shaw) (TC 1.A.1.2) subfamily. Kv3.2/KCNC2 sub-subfamily